Representing completely continuous operators through weakly ∞-compact operators
نویسندگان
چکیده
منابع مشابه
Representing Completely Continuous Operators through Weakly ∞-compact Operators
Let V,W∞, andW be operator ideals of completely continuous, weakly ∞-compact, and weakly compact operators, respectively. We prove that V =W∞ ◦W−1. As an immediate application, the recent result by Dowling, Freeman, Lennard, Odell, Randrianantoanina, and Turett follows: the weak Grothendieck compactness principle holds only in Schur spaces.
متن کاملRepresenting non–weakly compact operators
For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E/E) is defined by R(S)(x + E) = Sx + E (x ∈ E). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W (E) (here W (E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non–zero compact...
متن کاملCompletely Continuous Composition Operators
A composition operator Tbf = f o b is completely continuous on H1 if and only if \b\ < 1 a.e. If the adjoint operator Tg is completely continuous on VMOA , then 7¿ is completely continuous on Hl . Examples are given to show that the converse fails in general. Two results are given concerning the relationship between the complete continuity of an operator and of its adjoint in the presence of ce...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملWeakly Compact Groups of Operators
It is shown that the weakly closed algebra generated by a weakly compact group of operators on a Banach space is reflexive and equals its second commutant. Also, an example is given to show that the generator of a monothetic weakly compact group of operators need not have a logarithm in the algebra of all bounded linear operators on the underlying space. Let X be a complex Banach space, B(X) th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2016
ISSN: 0024-6093,1469-2120
DOI: 10.1112/blms/bdw015